The optimisers.highscore module¶
- class grond.optimisers.highscore.optimiser.DirectedSamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ scatter_scale¶
float, optionalScales search radius around the current highscore models
- ♦ scatter_scale_begin¶
float, optionalScaling factor at beginning of the phase.
- ♦ scatter_scale_end¶
float, optionalScaling factor at the end of the directed phase.
- ♦ starting_point¶
str(SamplerStartingPointChoice), default:'excentricity_compensated'Tunes to the center value of the sampler distribution.May increase the likelihood to draw a highscore member model off-center to the mean value
- ♦ sampler_distribution¶
str(SamplerDistributionChoice), default:'normal'Distribution new models are drawn from.
- ♦ standard_deviation_estimator¶
str(StandardDeviationEstimatorChoice), default:'median_density_single_chain'
- ♦ ntries_sample_limit¶
int, default:1000
- class grond.optimisers.highscore.optimiser.HighScoreOptimiser(**kwargs)[source]¶
Monte-Carlo-based directed search optimisation with bootstrap.
- ♦ sampler_phases¶
listofSamplerPhaseobjects, default:[]
- ♦ chain_length_factor¶
float, default:8.0
- ♦ nbootstrap¶
int, default:100
- ♦ bootstrap_type¶
str(BootstrapTypeChoice), default:'bayesian'
- ♦ bootstrap_seed¶
int, default:23
- class grond.optimisers.highscore.optimiser.HighScoreOptimiserConfig(**kwargs)[source]¶
Undocumented.
- ♦ sampler_phases¶
listofSamplerPhaseobjects, default:[<grond.optimisers.highscore.optimiser.UniformSamplerPhase object at 0x7fd09784d5d0>, <grond.optimisers.highscore.optimiser.DirectedSamplerPhase object at 0x7fd09784d850>]Stages of the sampler: Start with uniform sampling of the model model space and narrow down through directed sampling.
- ♦ chain_length_factor¶
float, default:8.0Controls the length of each chain: chain_length_factor * nparameters + 1
- ♦ nbootstrap¶
int, default:100Number of bootstrap realisations to be tracked simultaneously in the optimisation.
- class grond.optimisers.highscore.optimiser.InjectionSamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ xs_inject¶
numpy.ndarray (
pyrocko.guts_array.Array)Array with the reference model.
- class grond.optimisers.highscore.optimiser.SamplerDistributionChoice(...) dummy for str[source]¶
Any
strout of['multivariate_normal', 'normal'].
- class grond.optimisers.highscore.optimiser.SamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ niterations¶
intNumber of iteration for this phase.
- ♦ ntries_preconstrain_limit¶
int, default:1000Tries to find a valid preconstrained sample.
- ♦ seed¶
int, optionalRandom state seed.