Kinematic/Dynamic source parameter modeling/inversion¶
Calculate subfault dislocations from tractions with Okada half-space equation¶
In this example we create a OkadaSource
and compute the spatial quasi-static dislocation field caused by a traction field. The linear relation between traction and dislocation is calculated based on Okada (1992) [1].
Download okada_inversion_example.py
import numpy as num
from pyrocko.modelling import OkadaSource, DislocationInverter
from pyrocko.plot import dislocation as displt
km = 1e3
# Set source parameters
ref_north = 0*km
ref_east = 0*km
ref_depth = 50.*km
length_total = 50. * km
width_total = 15. * km
nlength = 20 # number of subpatches
nwidth = 16
npoints = nlength * nwidth
al1 = -length_total / 2.
al2 = length_total / 2.
aw1 = -width_total / 2.
aw2 = width_total / 2.
source = OkadaSource(
lat=0., lon=0., north_shift=ref_north, east_shift=ref_east,
depth=ref_depth,
al1=al1, al2=al2, aw1=aw1, aw2=aw2, strike=45., dip=0.,
slip=1., opening=0., poisson=0.25, shearmod=32.0e9)
# Discretize source and set receiver locations on source plane center points
source_discretized, _ = source.discretize(nlength, nwidth)
receiver_coords = num.array([
src.source_patch()[:3] for src in source_discretized])
# Create stress drop (traction) array with spatial varying traction vectors
dstress = -1.5e6
stress_comp = 1
stress_field = num.zeros((npoints * 3, 1))
for il in range(nlength):
for iw in range(nwidth):
idx = (il * nwidth + iw) * 3
if (il > nlength / 2. and il < nlength - 4) and \
(iw > 2 and iw < nwidth - 4):
stress_field[idx + stress_comp] = dstress
elif (il > 2 and il <= nlength / 2.) and \
(iw > 2 and iw < nwidth - 4):
stress_field[idx + stress_comp] = dstress / 4.
# Invert for dislocation on source plane based on given stress field
disloc_est = DislocationInverter.get_disloc_lsq(
stress_field, source_list=source_discretized, nthreads=0)
# Plot
displt.plot(
disloc_est.reshape(npoints, 3),
receiver_coords,
titles=['$u_{strike}$', '$u_{dip}$', '$u_{opening}$', '$u_{total}$'],
cmap='viridis_r')
Footnotes
[1] | Okada, Y., Gravity and potential changes due to shear and tensile faults in a half-space. In: Journal of Geophysical Research 82.2, 1018–1040. doi:10.1029/92JB00178, 1992. |